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Abstract An intrinsic property of human motor behavior
is a trade-off between speed and accuracy. This is classi-
cally described by Fitts’ law, a model derived by assuming
that the human body has a limited capacity to transmit infor-
mation in organizing motor behavior. However, Fitts’ law
can also be realized as an emergent property of movements
generated by delayed feedback. In this article, we describe
the relationship between the Fitts’ law coefficients and the
physiological parameters of the underlying delayed feedback
circuit: the relaxation rate or time constant, and the psycho-
motor delay of the feedback process. This relationship is
then used to estimate the motor circuit delay of several tasks
for which Fitts’ law data are available in the literature. We
consistently estimate the delay to be between 0 and 112 ms.
A further consequence of this model is that not all com-
binations of slope and Y-intercept in Fitts’ law are possible

Electronic supplementary material The online version of this
article (doi:10.1007/s00422-009-0336-3) contains supplementary
material, which is available to authorized users.

D. Beamish (B) · Z. Jing
Chinese Academy of Science, Academy of Mathematics
and Systems Science, Beijing, China
e-mail: dan.beamish@gmail.com

S. Bhatti
Department of Biology, York University, Toronto, Canada

C. S. Chubbs
University of Ottawa Medical School, Ottawa, Canada

I. S. MacKenzie
Department of Computer Science and Engineering,
York University, Toronto, Canada

J. Wu
Laboratory for Industrial and Applied Mathematics,
York University, Toronto, Canada

when movements are generated by delayed feedback. In fact,
it is only possible for an observed speed–accuracy trade-
off to be generated by delayed feedback if the Fitts’ law
coefficients satisfy −0.482 ≤ a/b ≤ 3.343 [bits] where b
represents the slope in bits per second and a represents the
Y-intercept in seconds. If we assume human movement is
generated by delayed feedback, then the Fitts’ law coeffi-
cients should always be restricted to this range of values.

Keywords Fitts’ law · Psychomotor delay ·
Motor performance · Motor control · Neurodynamics

1 Introduction

An intrinsic property of the human motor behavior is a trade-
off between speed and accuracy (Woodworth 1899). This is
classically described by Fitts’ law (1954), a model derived
by assuming that the human body has a limited capacity to
transmit information in organizing motor behavior. Within
this model, the time to perform a task is proportional to the
amount of information (in bits) required on average for pro-
ducing the movement. This quantity is known as the Index
of Difficulty (ID) of a task and is often quantified using the
Shannon Coding Theorem with movement time (MT) given
as

MT = b · ID = b · log2

(
A

W
+ 1

)
,

where A is the amplitude of the movement, W is the tol-
erance or target width (MacKenzie 1989), and the slope
b is determined empirically. The inverse of the slope 1/b,
which has units of bits per second, is interpreted as the infor-
mation capacity of the motor “channel” used in perform-
ing the task. Experimentally, where a model is built using
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linear regression, Fitts’ law usually appears as

MT = a + b · ID = a + b log2

(
A

W
+ 1

)
,

with both the slope b and Y-intercept a as measured values.
In the more than 50 years since originally described, there

have been many investigations into what physiological pro-
cesses occur during movement that give rise to Fitts’ law
beyond the information hypothesis. Furthermore, Fitts’ law is
so universally observed that any model of human motor con-
trol must account for its predictions. One modeling approach
is that Fitts’ law arises as an emergent property of delayed
feedback control within the motor circuit (Gawthrop et al.
2007; Beamish et al. 2006; Connelly 1984; Cannon 1994;
Phillips and Repperger 1997; Jagacinski and Flach 2003).
Because signals are not transmitted instantaneously through
the human body, movement taking place on time scales
smaller than the required delay could not have sensory or
other feedback information available to coordinate or control
the movement. This naturally gives rise to a speed–accuracy
trade-off since the accuracy of faster movements is dimin-
ished by the larger distances being moved during the time
required for those signals to be received.

There is strong neurobiological evidence in support of
feedback determining motor performance: The Vector Inte-
gration To Endpoint (VITE) circuit (Bullock and Grossberg
1988) is one of the earliest models to suggest that invariant
properties of movement such as Fitts’ law are best understood
as emergent properties of underlying neurobiological mech-
anisms. Within the VITE model, inequalities of distance are
translated into neural commands as differences in the amount
of contraction by muscles forming a synergy (Hollerback
et al. 1986). Motor planning occurs in the form of a Target
Position Command (TCP) which specifies the desired tar-
get position, and an independently controlled gain signal
(G) regulating the overall movement speed. Automatic feed-
back processes between nerve populations of the motor cir-
cuit then convert these signals into a movement trajectory.
This includes a Present Position Command (PPC) specify-
ing an internal representation of the current position, and a
Difference Vector (DV) command specifying the difference
between the present and target position at any given time.
The PPC generates a pattern of outflow movement signals to
muscle groups causing movement toward the target, and is
gradually updated by integrating signals from the DV through
time. The DV signals are multiplied by the gain signal prior
to integration, which serves to regulate the movement speed.
Throughout the movement, the PPC additionally sends sig-
nals back to the DV population which aid in the computation
of the difference vector. See Fig. 1 which contains a network
diagram of the VITE circuit.

Movement trajectories are generated by negative feedback
as outflow motor commands from the PPC cause movement

Fig. 1 A network diagram of
the VITE circuit with
connections indicated as
excitatory or inhibitory. TPC
target position command, PPC
present position command, DV
difference vector, G gain signal

toward the target, in turn, causing the DV to be reduced.
This feedback suffers from two separate delays: the delay
in response of the muscle plant to outflow motor commands
by the PPC; and the delay with which the DV population
responds to the signals sent back from the PPC giving present
position information. It is highly likely that a forward predic-
tor mechanism operates at this stage, the purpose of which
is to compensate for delay by anticipating the response of
the muscles and environment to outflow motor commands
(Miall and Wolpert 1996; Tunik et al. 2005; Cisek 2001).

The simplest model consistent with the above constraints
obeys the set of nonlinear delay differential equations

dV

dt
= α [−V (t) + T (t) − P(t − τ1)] , (1)

dP

dt
= G · [V (t − τ2)]

+ , (2)

where T (t) and P(t) represent the PPC and TPC activities,
V (t) represents the DV population activity, G represents the
gain signal, and where

[V (t)]+ =
{

0 if V (t) ≤ 0
V (t) if V (t) > 0

.

The first equation says that the activity of the DV popula-
tion averages the difference between the target and position
command signal by bringing V (t) toward the equilibrium
value of V (t) = T (t) − P(t) with rate or time constant, α,
but having a delayed response time, τ1, to present position
signals. The larger the value of α, which has units of 1/ms,
the more quickly the DV population adapts to the changing
present position command. The second equation asserts that
the PPC cumulatively integrates the DV signals multiplied
by the gain, G, and delayed by the time, τ2, required for
response to outflow motor commands—but only for such a
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duration as the DV generates a positive signal from the pres-
ence of the cutoff function. The cutoff function appearing in
Eq. 2 allows only unidirectional movement toward the target
by halting the dynamics once the DV population becomes
zero. It is a deceptively simple nonlinearity that introduces
an infinite number of equilibria to the delay dynamical sys-
tem (1–2) and prevents the application of standard analytical
techniques for dynamical systems. See Beamish et al. (2005)
and Beamish et al. (2006) for a discussion of the VITE circuit
dynamics.

A tacit assumption made by the system (1–2) is that the
limb response to outflow signal size is linear. Muscle plant
characteristics can change through time because of growth
and development, aging, exercise, transient changes in blood
supply, or minor tears. Therefore, it is not known a priori
how much a muscle will contract in response to an outflow
signal of a prescribed size, or how the limb will move in
response to a prescribed muscle synergy contraction. Bullock
and Grossberg propose that auxilliary circuits serve to adap-
tively modify outflow motor commands to produce a linear
correspondence between the signal size and amount of con-
traction even if the muscle plant is nonlinear. See Bullock
and Grossberg (1988) for a discussion. This mechanism of
adaptive linearization has obvious similarities to the forward
predictor mentioned above although it is not clear if they are
the same.

An interesting and remarkable property of the VITE
circuit is that it possesses a speed–accuracy trade-off consis-
tent with Fitts’ law and potentially explaining many exper-
imental inconsistencies of the information model (Beamish
et al. 2006). The ideal circuit operating with no delays has a
performance identical with the predictions of the information
hypothesis so that MT = b · ID (Bullock and Grossberg
1988). When delay is activated, however, the Y-intercept
becomes non-zero and may even be negative so that MT =
a+b ·ID. Negative Y-intercepts have been problematic since,
to be consistent with the information hypothesis, the intercept
should be (0, 0) predicting 0 ms to complete a task requir-
ing 0 bits. For this reason, the intercept is often regarded
as an “error” term in most of the literature on Fitts’ law
(e.g., Soukoreff and MacKenzie 2004). Several interpreta-
tions of a non-zero Y-intercept have been described, includ-
ing: unavoidable delay in the psychomotor system (Fitts and
Radford 1966); uncontrollable muscle activity at the begin-
ning or end of the movement task (MacKenzie 1992); and
reaction time (Fitts 1964). However, these explanations are
compromised because negative intercepts often occur, and
they are frequently too large to be attributed to random vari-
ations in subject performance (Soukoreff and MacKenzie
2004).

In this article, we describe the relationship between the
coefficients occurring in Fitts’ law and the physiological
parameters of the VITE circuit: the feedback time constant or

relaxation rate; and the psychomotor delay. This relationship
is then used to estimate the motor pathway delay of several
tasks for which Fitts’ law data are available in the literature.
We consistently estimate values between 0 and 112 ms with
the majority found to be less than 60 ms. However, it is not
clear what specific neural pathway this delay might actually
correspond to. Furthermore, if a forward predictor mech-
anism operates to compensate for the motor circuit delay,
then what we actually estimate would be the effective total
delay of the feedback process giving rise to the observed
speed–accuracy trade-off instead of nerve conduction time.
If this is the case, present position information derived dur-
ing the performance of different tasks may rely on specific
task-dependent neural mechanisms with different effective
delays, complicating the interpretation of any estimate.

An additional property of the VITE circuit is that there
exists a maximum performance possible when delay is pres-
ent (Beamish et al. 2008). This is strictly a delay effect and
is a completely different behavior from the classical Fitts’
law as a regression model where slope and Y-intercept may
take arbitrary values. Here, we show that, as an unexpected
consequence of this performance limit, it is only possible for
an observed speed–accuracy trade-off to have been generated
by the delayed feedback process of the VITE circuit if the
Fitts’ law coefficients satisfy −0.482 ≤ a/b ≤ 3.343 bits.
Assuming that the VITE circuit is a satisfactory model of
human motor control we should always expect the Fitts’ law
coefficients to be restricted to this range. A survey of various
Fitts’ law data sets reported in the literature finds this to be
the case with the few exceptions explainable by methodo-
logical problems in the motor experiment design. Moreover,
this should be an ubiquitous property of any delayed lin-
ear feedback controller that is only capable of unidirectional
movement.

The outline of this article is as follows. Section 2 describes
the speed–accuracy performance of the delayed VITE cir-
cuit. Section 3 describes the explicit relationship between
the VITE circuit parameters and the Fitts’ law coefficients.
Here, it is also demonstrated that under the assumptions of
the VITE model the Fitts’ law coefficients always satisfy
the restriction mentioned above. Section 4 gives an analysis
of various Fitts’ law data sets available in the literature to
estimate the motor circuit parameters, in particular, the psy-
chomotor delay, and to support the finding that the Fitts’ law
coefficients are, in fact, restricted. Section 5 concludes the
article with a discussion and interpretation of the results.

2 The performance of the VITE circuit

When considering the dynamics of the VITE circuit, we
assume throughout this article that it is initially in an equi-
librium state where PPC and TPC are equal. At time zero,
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a new target position stimulus is presented causing move-
ment toward the target as the PPC shifts toward the new
equilibrium. It is not difficult to show through a change of
variables that the dynamics of the circuit depends only on
the total amount of delay τ = τ1 + τ2. For the circuit with
fixed parameters, α, τ , the qualitative behavior of the PPC
trajectory depends only on the magnitude of the gain signal,
G: if the gain is sufficiently large, then the PPC overshoots
the target and comes to rest after a finite time; otherwise,
the PPC asymptotically approaches the target without over-
shooting (Theorem 1 from Beamish et al. 2005). Once the
target and gain signals have been specified, the movement
time and amount of target overshoot are determined auto-
matically by negative feedback between the PPC and DV
populations. We may, therefore, formulate a speed–accuracy
trade-off for the circuit by considering the question: What is
the minimum movement time required after initial presenta-
tion of a fixed target stimulus to move through an amplitude
A and come to rest within a target zone of width W ? It can
further be shown that movement times are independent of
the amplitude, A, and the amount of target overshoot is pro-
portional to the movement amplitude so that the minimum
movement time required may be considered to be a function
of A/W or, alternatively, as a function of the Index of Diffi-
culty, ID = log2

( A
W + 1

)
(Theorems 3 and 6 from Beamish

et al. 2006, respectively).
There is flexibility here in how we choose to define “move-

ment time” of a trajectory that will later affect our estima-
tion of psychomotor delay from the speed–accuracy trade-off
observed for a motor task. For example, should the measure-
ment of movement time begin at the time when the initial
target stimulus is presented (as might be measured during
a reciprocal tapping task), or, at the time when movement
toward the target begins (as might be measured with a dis-
crete task)? The difference in time between these two defi-
nitions would be exactly τ1 + τ2: the delay between target
stimulus presentation and movement toward the target. In
addition, we could also consider the time required for the
PPC to enter the target zone, instead of the time at which
the PPC reaches equilibrium and comes to rest, although we
do not consider that in this article. We state the following
definitions of movement time for clarity:

Definition 1 (Stimulus-based) The movement time
MTStimulus

α,τ (ID) of a VITE circuit trajectory is the minimum
time measured from the initial target stimulus presentation
required to move through a distance A and come to rest within
a distance W of the target (Remember that this depends only
on A/W and is, therefore, a function of ID.).

Definition 2 (Movement-based) The movement time
MTMovement

α,τ (ID) of a VITE circuit trajectory is the minimum
time measured from the beginning of movement after the
initial target stimulus presentation required to move through

a distance A and come to rest within a distance W of the
target.

Also, as remarked above, we have

MTStimulus
α,τ (ID) = τ + MTMovement

α,τ (ID).

Unless otherwise specified, movement time MTα,τ (ID) will
refer to the stimulus-based definition MTStimulus

α,τ (ID). We
refer to the speed–accuracy trade-off between movement
time and ID as simply the “performance” of the circuit for a
given pair of parameters α, τ .

When the delay is zero, the Eqs. 1 and 2 can be solved
exactly and the speed–accuracy trade-off is

MT = 2 ln 2

α
log2

(
A

W

)
,

a straight line through the origin consistent with the
information-theoretic paradigm (Appendix A from Bullock
and Grossberg 1988). When delay is activated, an approxi-
mately linear relationship with non-zero Y-intercept contin-
ues to hold for movement times that are large relative to the
delay so that MTα,τ (ID) ≈ a + b · ID, but as the ID dimin-
ishes a nonlinear breakdown occurs in which the predicted
movement time approaches the lower limit of 2τ imposed
by delay (Beamish et al. 2006). The Y-intercept a may be
either positive or negative, with both the Y-intercept a and
slope b nonlinearly coupled to both the delay τ , and the DV
population relaxation rate, α. There is no simple expression
for this relationship although it is computable by integra-
tion of the model equations as described below. It is this
relationship between the Fitts’ law coefficients, a, b, and the
physiological relaxation rate, α, and psychomotor delay, τ ,
that is considered in the following sections.

2.1 Method

Our method of computing the performance of the VITE cir-
cuit is based on the following result that for any constant,
c > 0, we have

c · MTα,τ (ID) = MT α
c ,cτ (ID). (3)

In other words, scaling the movement times by c gives the
speed–accuracy trade-off corresponding to the circuit having
delay multiplied by c and the DV population relaxation rate,
α, multiplied by 1

c . This is found simply by rescaling time
in the model Eqs. 1–2 (see Theorem 11 from Beamish et al.
2008). The advantage of this is that we can determine the
performance of the circuit with arbitrary parameters after we
know the performances of the circuit having either α = 1 or
τ = 1. This will be important later for both estimating delay
from measured movement times and showing there is only a
limited range of possible slope and intercept values possible
for the speed–accuracy trade-off of the VITE circuit:
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Theorem 1 The performance for the circuit with parame-
ters a, τ are determined from the performance of the circuit
with either α = 1 or τ = 1 using

MTα,τ (ID) = 1

α
· MT1,ατ (ID) = τ · MTατ,1(ID). (4)

Proof Substituting c = α into Eq. 3 above and dividing both
sides by α, we have the result for α = 1. Substituting c = 1/τ

and multiplying both sides by τ gives the other.

The performance curves were calculated by integrating
the model Eqs. 1 and 2 using the dde23 routine of Matlab
v7.5 to obtain the amount of target overshoot and movement
time for different values of gain G. This gives individual
points (ID,MT) along the performance curve. A sufficient
number of points are calculated so that there is at least one
within each 0.2 bit interval between 0 and 10 bits. We then use
linear interpolation to determine the values of MTα,τ (ID) at
intermediate points throughout the interval. The Matlab code
is included in the supplemental material for this article.

3 The relationship between the model parameters
and the Fitts’ law coefficients

In Beamish et al. (2008) it is shown that the VITE circuit is
not capable of arbitrarily high performance movements when
delay is present. Here, we show that, as a consequence of
this performance limit, not all values for the Fitts’ law slope
and intercept coefficients have corresponding VITE circuit
parameters, α, τ , giving rise to that speed–accuracy trade-off.
In fact, only when the coefficients satisfy −0.482 ≤ a/b ≤
3.343 [bits] do there exist corresponding values of α, τ such
that MTα,τ (ID) ≈ a + b · ID. We describe the general rela-
tionship between the VITE circuit parameters and the Fitts’
law coefficients when they do exist. This will be used in
the next section to estimate psychomotor delay from speed–
accuracy trade-off reported in the literature for various motor
tasks.

Toward this goal, it is convenient to consider the circuit
in terms of two new parameters c = 1/α and k = ατ so that,
using Eq. 3 above, we have

c · MT1,k(ID) = MT1/c,ck(ID) = MTα,τ (ID). (5)

This is done without loss of generality and has the advan-
tage that now the speed–accuracy trade-off c · MT1,k(ID) is
linear in the variable c. The variable, k = ατ , the product
of the time constant and the delay, determines the “shape”
of the speed–accuracy trade-off (always approximately a
straight line with nonlinear breakdown as the movement
time approaches the delay). After we know the relationship
between the slope and intercept of MT1,k(ID) for the differ-
ent values of k (i.e., the performance of the circuit with time

constant α = 1 for different delays), it is easy to determine
the rest because the dependence on c is simply linear.

Suppose that the speed–accuracy trade-off MT1,k(ID) is
approximately linear so that

MT1,k(ID) ≈ a(k) + b(k) · ID (6)

where the slope b(k) and Y-intercept a(k) depends on k. We
may normalize the slope to 1 if we choose c = 1/b(k) so that

1

b(k)
MT1,k(ID) ≈ a(k)

b(k)
+ ID, (7)

and the Y-intercept becomes a(k)/b(k). Furthermore, for
each k > 0, there is only one value of c that would make
the slope equal to 1 because of the linear dependence. Multi-
plying Eq. 7 by a positive constant b′ gives a new parameter
c = b′ 1

b(k)
for which

b′ 1

b(k)
MT1,k(ID) ≈ b′ a(k)

b(k)
+ b′ · ID, (8)

so that the slope becomes b′ and the Y-intercept becomes
b′ a(k)

b(k)
.

Now, although we can always choose the parameter, (c, k),
to make the slope, b′ of any value we want, the Y-intercept
must always be b′ a(k)

b(k)
, which is dependant on both the slope

and the ratio a(k)/b(k). If this ratio takes all possible real
values (−∞,∞), then we could also make the Y-intercept
of any value we want by choosing appropriate values of k
and c. However, this is not the case. Instead, it takes on only
a finite range of values due to the limiting behavior of the
circuit as k → 0 or k → ∞:

(i) In the limit as k → 0, the performance of the circuit
approaches that of the ideal circuit with zero delay so
that

MT1,k(ID) = 2 ln 2 log2

(
A

W

)
.

(ii) In the limit as k → ∞, the performance of the circuit
approaches its maximum limit described by Eq. 17 in
Beamish et al. (2008) so that

MT1,k(ID) ≈ k (0.049 + 0.687 · ID).

Note that the slope and intercept occurring in this
upper limit change slightly depending on how we
choose to make the linear approximation in Eq. 6.

The effect that this limiting behavior has on the range
of possible Y-intercept values may be seen in Fig. 2 which
contains graphs of MT1,k(ID) for which the slope has been
normalized to 1 for various values of k. The Y-intercepts are
equal to the ratio, a(k)/b(k), which is clearly seen to take
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Fig. 2 Performance curves MT1,k(ID) are normalized so that the lin-
ear regression has a slope of 1 (solid) and the regression line (dotted)
for k = ατ of 0, 0.01, 0.1, 0.25, 0.5, 1, 2, 3, 10, and ∞. Observe that
these curves approach a limit as k → 0 or k → ∞. The normalized
performance curves as k = ατ → 0,∞ are shown in red. The only
possible performance curves for the delayed feedback circuit are the
constant multiples of these, and thus only take on a finite range of slope
and intercept values (color figure online)

only a finite range of values. Figure 3 contains graphs of this
Y-intercept as a function of k using the two different defini-
tions of movement time. We find that −0.482 ≤ a(k)/b(k) ≤
3.343 for the stimulus-based definition of movement time,
and −0.478 ≤ a(k)/b(k) ≤ 1.763 for the movement-based
definition. Keep in mind that the exact values of the slope
b(k) and Y-intercept a(k) are dependent on how we choose
to make the linear approximation in Eq. 6. The method
used throughout this article is by sampling the speed–accu-
racy trade-off MT(ID) at evenly spaced points 0.2 bits apart
between 1 and 10 bits and, then, performing linear regres-
sion to determine the slope and intercept coefficients. We
ignore the region between 0 and 1 bit because this is where
the highest amount of nonlinearity occurs in the relationship
MT(ID) and is the hardest region to experimentally measure
movement time, although variations on this do not seem to
greatly affect the end result. From the above analysis, there
exist values of the VITE circuit parameters α, τ correspond-
ing to the Fitts’ law coefficients MT = a +b · ID, if and only
if, −0.482 ≤ a/b ≤ 3.343.

The argument above has the further advantage of giving us
the relationship between the VITE model parameters α, τ and
the Fitts’ law coefficients a, b. After the slope and Y-intercept
have been determined for MT1,k(ID) as in Eq. 6, Eq. 7 gives
us the relationship between the model parameters c, k (and
hence α, τ ) and the Y-intercept a(k)/b(k) when the slope is
equal to one. This is displayed in Fig. 4. The parameters for

0 2 4 6 8 10 12 14 16 18 20
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S/t pecr et nI noi sser ge
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Fig. 3 Graph of the intercept divided by slope for linear regression
of the performance curve MT1,k(ID) as a function of k. The solid line
uses the stimulus-based definition of MT while the broken line uses the
movement-based definition. Regression curves are computed by sam-
pling the performance curve at intervals of 0.2 bits between 1 and 10 bits

any values of slope and intercept can then be determined by
first normalizing the slope to 1 as in Eq. 7—i.e., by dividing
the intercept by the slope—and then looking up the resulting
value of k corresponding to the new Y-intercept as above.

Figures 5 and 6 contain the complete relationship between
the Fitts’ law coefficients and the model parameters using the
stimulus-based definition of movement time computed using
the approach described above. Figures 7 and 8 contain this
relationship using the movement-based definition of move-
ment time. The estimated relationship is clearly seen to be
different between the two definitions so that any estimate
of delay is highly sensitive to considerations of reciprocal
versus discrete experimental design (among other factors).

4 Estimation of psychomotor delay from the observed
speed–accuracy trade-off

In the previous section, we considered the relationship
between the model parameters of the VITE circuit and the
Fitts’ law coefficients. Here, we use this relationship to esti-
mate the psychomotor delay involved in various tasks for
which the speed–accuracy trade-off is reported in the litera-
ture. Specifically, we consider the collection of data sets pre-
sented in the appendices of MacKenzie (1991). These include
Fitts’ reciprocal tapping, pin and disc transfer tasks; com-
puter input tasks; and 25 additional data sets from various
studies.

For a given set of experimentally measured movement
times (IDi , MTi ), a nonlinear regression was used to deter-
mine the model parameters α, τ which minimize the
least-squares difference
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Fig. 5 Contour diagram of the Fitts’ law slope (red) and Y-intercept (blue) dependence on the model parameters using the stimulus-based definition
of MT. Linear regression was performed at evenly spaced points 0.2 bits apart between 1 and 10 bits (color figure online)
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Fig. 6 Contour diagram of the relationship between the Fitts’ law slope
and Y-intercept, and the model parameters, delay τ (red) and DV popula-
tion relaxation rateα (blue) using the stimulus-based definition of move-

ment time. Contours for delay are every 50 ms. Contours for relaxation
rate are every 0.001 ms/bit. Linear regression was performed at evenly
spaced points 0.2 bits apart between 1 and 10 bits (color figure online)

∆(α, τ) =
√√√√ n∑

i=1

(
MTα,τ (IDi ) − MTi

)2

between the experimental data and the speed–accuracy trade-
off of the delayed feedback circuit. This allows for the pos-
sibility that the natural nonlinearity of the delayed feedback
circuit performance might have a superior or inferior fit to
the measured data compared with linear regression. The def-
inition of movement time used here will affect the estimation
of the parameters and, ideally, should be identified with what
has been measured. However, we assume throughout this sec-
tion that movement time begins when the initial stimulus is
presented.

It is convenient to use Eq. 5 to express the speed–accuracy
trade-off of the VITE model in terms of the variables c, k so
that

∆(c, k) =
√√√√ n∑

i=1

(
c · MT1,k(IDi ) − MTi

)2

which now has a linear dependence on the variable c. It is
also necessary to consider only a finite range for the variable

k because of the limiting behavior mentioned in the previous
section as k becomes large. By precomputing MT1,k(ID) and
using these simplifications, it is straightforward to calculate
∆(α, τ) and find the global minimum. These are reported in
Table 1.

In order to estimate a range for the delay, a contour plot
is created showing those parameter values (α, τ ) for which
the difference between the model and the data is within 10%
of the difference between the linear regression and the data.
Figure 9 contains graphs of the estimated parameters for the
unadjusted data of the six computer input tasks presented
in Appendix B of MacKenzie (1991). Estimates for psycho-
motor delay for these tasks are found to be between 16 and
109 ms. Figure 10 contains graphs of the estimated parame-
ters for Fitts’ original 1954 reciprocal tapping, pin, and disc
transfer tasks. The data provided for the reciprocal tapping
tasks allow re-analysis to include adjustment for accuracy
that will be discussed below. The estimated delay and relax-
ation rate for the remaining data sets are contained in Fig. 11
while Fig. 12 contains graphs comparing the speed–accu-
racy trade-off of the delayed feedback model with the lin-
ear regression. The estimated delays for all the motor tasks
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Fig. 7 Contour diagram of the linear regression slope (red) and Y-intercept (blue) dependance on the model parameters using the movement-based
definition of movement time. Linear regression was performed at evenly spaced points 0.2 bits apart between 1 and 10 bits (color figure online)

considered were between 0 and 90 ms. The finding of zero
delays is not inconsistent with the assumption that nerve con-
duction delays are present if a forward predictor mechanism
exists within the motor circuit.

For the data sets reported in Annett et al. (1958), Glencross
and Barrett (1983) Dataset B, and Marteniuk et al. (1987),
no delayed feedback model parameters (α, τ ) exist, which
reproduce the speed–accuracy trade-off reported. This is
because the slope and intercept do not satisfy the relation-
ship −0.482 ≤ a/b ≤ 3.343 [bits]. These studies report
data having large positive Y-intercepts, and a possible expla-
nation is that movement time may be overestimated because
“dwell” time or other artifact has been incorporated into the
reported value. As mentioned before, the estimated parame-
ters are highly sensitive to errors in the measured movement
time data.

4.1 Consideration of effective target width

An important consideration in our analysis of experimen-
tal data is the concept of “effective target width” originally

described by Welford (1968). In the classic design of an
experiment tomeasureperformance,movement time(theout-
put condition) is determined in response to variation in tar-
get width (the input condition). Thus, at the model building
stage, the target width W is the independent variable, and MT
is the dependent variable. However, as the difficulty of the task
diminishes and target width becomes larger, the subject may
not takeadvantageof theentire targetareaand insteadperform
the task with a tolerance above that of the experiment design.
It is, therefore, important to consider instead the “effective”
target width We derived by observing the end-point variabil-
ity when the task is performed. It is the relationship between
We and movement time that is actually measured.

As discussed in MacKenzie (1991), this adjustment lies at
the heart of the information-theoretic metaphor that move-
ments are analogous to “signals” and target width is analo-
gous to noise. The Shannon definition for index of difficulty
is based on the premise that the signals are perturbed by white
thermal noise so that movement endpoints exhibit a Gaussian
spatial distribution. The information in bits (or entropy) of a
normal distribution is
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Fig. 8 Contour diagram of the relationship between the linear regres-
sion slope and Y-intercept, and the model parameters, delay τ (red)
and DV population relaxation rate α (blue) using the movement-based
definition of movement time. Contours for delay are every 50 ms.

Contours for relaxation rate are every 0.001 ms/bit. Linear regression
was performed at evenly spaced points 0.2 bits apart between 1 and 10
bits (color figure online)

H = log2

(√
2πe × σ

)
= log2 (4.133 × σ)

where σ is the standard deviation in the unit of measurement.
Splitting the constant 4.133 into a pair of z-scores for the unit-
normal curve (i.e., σ = 1), the area bound by z = ±2.066
represents about 96% of the total area of distribution. In other
words, a condition that target width is analogous to the infor-
mation-theoretic concept of noise is that 96% of the spatial
variability lies within the target width while the remaining
4% lie outside or “miss” the target. When an error rate other
than 4% are observed, target width should be adjusted to form
the effective target width in calculating the ID.

There are two methods for determining the effective tar-
get width: the Standard Deviation (SD) or the Discrete Errors
(DE) method. If the standard deviation in the endpoint coor-
dinates is known, we just multiply by 4.133 to obtain the
effective target width W SD

e that contains 96% of the spatial
variability. Alternatively, when the percent of DE is known,
we may use a table of z-scores to determine the width W DE

e
that would contain 96% of the spatial variability given the
actual target width and percent errors. For example, if an

experiment with a target width of 5 cm resulted in missing
the target 2% of the time, then

W DE
e =

(
2.006

z

)
× W = 2.006

2.326
× 5 = 4.45 cm

where z is the z-score such that ±z contains 2% of area under
the unit-normal curve.

Figures 13 and 14 contain graphs of the estimated param-
eters for the computer input data from MacKenzie (1991)
adjusted using the SD and DE method, respectively. Using
the adjusted data changes the estimate of delay from 0 to
65 ms with the SD method, and from 10 to 110 ms for the DE
method. Figure 10 additionally contains estimated parame-
ters for Fitts’ reciprocal tapping experiment for which an
adjustment for accuracy using the DE method has been done.
When this is done, the delay estimate becomes almost zero.
One possible explanation for this is that the forward predic-
tor mechanism is completely able to compensate for delay in
this case. An alternative explanation is that our model lacks
reality.
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Table 1 Tables of delayed feedback parameters for the data sets presented in MacKenzie (1991)

Study Linear regression Delayed feedback %Diff.

Slope [s/bit] Intercept[s] Diff. Alpha [1/ms] Delay [ms] Diff.

MacKenzie Thesis—Appendix B
Unadjusted data

Tablet pointing 172.8 81.4 93.66 0.00869 36.7 93.45 −0.2
Tablet dragging 197.6 142.1 149.08 0.00768 55.4 151.69 1.7
Mouse pointing 202.0 −1.7 139.61 0.00749 21.2 145.52 4.2
Mouse dragging 206.7 225.6 147.62 0.00747 79.6 147.71 0.1
Trackball pointing 270.5 197.0 279.57 0.00560 76.0 279.88 0.1
Trackball dragging 331.4 184.4 410.61 0.00456 78.6 414.51 0.9

Adjusted for accuracy (SD)
Tablet pointing 203.5 −54.8 148.09 0.00750 9.9 149.41 0.9
Tablet dragging 275.6 −27.3 132.18 0.00544 25.3 141.27 6.9
Mouse pointing 222.6 −107.3 154.73 0.00700 3.9 163.13 5.4
Mouse dragging 248.8 134.6 141.69 0.00608 57.9 145.07 2.4
Trackball pointing 299.8 75.3 290.86 0.00503 48.5 293.68 1.0
Trackball dragging 688.4 −348.5 711.39 0.00245 25.7 729.80 2.6

Adjusted for accuracy (DE)
Tablet pointing 191.4 11.2 127.92 0.00786 21.8 129.60 1.3
Tablet dragging 242.2 77.7 122.10 0.00624 43.5 124.69 2.1
Mouse pointing 218.8 −78.4 160.61 0.00708 9.0 173.18 7.8
Mouse dragging 238.4 184.4 137.68 0.00637 70.0 139.20 1.1
Trackball pointing 296.8 88.1 284.68 0.00506 50.4 286.30 0.6
Trackball dragging 394.2 163.2 358.97 0.00383 79.5 362.42 1.0

Fitts (1954)
1oz stylus-unadjusted 111.5 27.7 68.59 0.01358 18.4 74.36 8.4
1oz stylus-adjusted (DE) 122.0 −31.4 67.55 0.01253 6.6 75.65 12.0
1lb stylus-unadjusted 123.7 9.7 87.43 0.01236 16.3 96.73 10.6
1lb stylus-adjusted (DE) 142.4 −85.2 71.84 0.01107 0.0 83.24 15.9
Pin transfer 89.4 84.4 240.23 0.01728 31.7 239.47 −0.3
Disc transfer 92.6 223.4 244.67 0.02428 90.4 243.12 −0.6

Andres and Hartung (1989)
Dataset A 183.7 1.5 110.03 0.00841 21.6 116.32 5.7
Dataset B 173.5 7.6 96.60 0.00881 20.6 97.36 0.8
Dataset T 178.6 4.5 90.96 0.00860 21.1 95.07 4.5

Annett et al. (1958)
Dataset A 50.0 197.9 35.28 1.11495 88.1 44.03 24.8
Dataset B 49.0 162.3 15.33 1.22683 81.0 18.53 20.8
Dataset C 46.1 197.0 25.65 1.17231 83.6 38.80 51.3
Dataset T 43.0 243.3 98.48 1.12945 88.0 113.97 15.7

Glencross and Barrett (1983)
Dataset A 94.6 107.8 77.71 0.01644 38.1 78.46 1.0
Dataset B 25.8 183.7 252.35 1.39697 66.9 259.80 3.0

Drury (1975) 102.1 137.5 40.62 0.01545 47.4 41.40 1.9
Gan and Hoffmann (1988) 33.1 99.0 170.65 0.07442 38.1 170.08 −0.3
Kerr (1973)

Dataset A 94.6 107.8 77.71 0.01644 38.1 78.46210 1.0
Dataset B 154.3 −5.2 72.27 0.00950 10.5 73.81 2.1
Dataset T 136.4 −5.1 41.13 0.01075 9.2 42.17 2.5

Kerr (1977) 63.2 35.1 307.09 0.02358 14.2 307.08 0.0
Kerr (1978)

Dataset A (land) 118.0 −5.3 46.19 0.01237 7.7 39.43 −14.6
Dataset B (water) 109.9 127.4 231.50 0.01437 46.5 231.82 0.1

Kerr and Langolf (1977) 82.6 −29.9 102.90 0.01815 1.2 106.70 3.7
Kvalseth (1976) 135.8 −15.4 95.58 0.01116 10.8 93.48 −2.2
Kvalseth (1977) 84.9 72.7 71.95 0.01793 26.9 72.02 0.1
Marteniuk et al. (1987)

Dataset A 53.3 111.3 38.51 0.03270 38.7 38.44 −0.2
Dataset B 64.3 239.8 49.67 0.60908 112.8 49.61 −0.1

Sugden (1980)
Dataset A 144.9 116.8 59.11 0.01052 44.0 60.37 2.1
Dataset B 80.8 120.7 26.21 0.01952 40.6 26.43 0.8
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Fig. 9 Estimation of parameters for the motor circuit involved in per-
forming computer input tasks (data from MacKenzie 1991 Appendix B)
using unadjusted data. For each task, the point of minimum least square
difference with the measured data is indicated in red along with con-
tours at every 1% of the least squares difference obtained for the linear

regression to a maximum of 10%. For comparison, the measured data,
linear regression (broken line), and the delayed-feedback performance
curve that best matches the data are given (solid line). The X-axis con-
tains the task ID in bits and the Y-axis contains the measured movement
time in milliseconds (color figure online)

5 Conclusion

In this article, we have described a relationship between the
Fitts’ law coefficients and the parameters of a delayed feed-
back model for human or mechanical motor control. From
this, it becomes possible to estimate physiological properties
of the motor circuit such as psychomotor delay from mea-
surement of the speed–accuracy trade-off. This method con-
sistently gives an estimate for the effective total motor circuit
delay of between 0 and 120 ms for several tasks with per-
formance data that have been reported in the literature. In
addition, it is shown that if we assume human movement is
generated by the delayed feedback circuit described here,
then the Fitts’ law coefficients must always satisfy the rela-
tionship −0.482 ≤ a/b ≤ 3.343 [bits] where b represents
slope (in bits per second) and a the Y-intercept in seconds.
This is a direct consequence of delay imposing a maxi-
mum limit on the performance that can be achieved by lin-
ear feedback when only unidirectional movement is possible
(Beamish et al. 2008). In fact, we should expect the behav-
ioral properties elaborated here to emerge in any delayed
linear feedback control that is only capable of unidirectional
movement. Figure 15 shows that the data sets considered here

support this conclusion. The few exceptions we attribute to
experimental design that systematically overestimates move-
ment times or failure to apply the adjustment for accuracy.

The purpose of this article is not to purport that the delayed
VITE model is an accurate description of the physiology
underlying motor control, but rather to consider the simplest
model necessary to show the emergent properties of delayed
feedback described here. In fact, there are several obvious
deficiencies in the model. For example, the VITE circuit does
not account for the observation of terminal phase submove-
ments that are seen in high ID reciprocal aiming tasks (Meyer
et al. 1988). Although there is no widely accepted model for
this, correction of the terminal phase likely involves auxillary
motor circuits that come online, as visual, proprioceptive, or
forward predictor information become available to correct
for neuromuscular noise and inaccuracy of the initial control
plan. This explains why submovement corrections generally
occur when movement times are larger.

Another obvious deficiency is that the noiseless and deter-
ministic circuit discussed here does not consider the effect
of uncontrolled random perturbations in nerve and muscle
activity that presumably gives rise to the spatiotemporal var-
iability of normal movements. In fact, recent study in this
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Fig. 10 Estimation of parameters for the motor circuit involved in per-
forming Fitts reciprocal tapping with 1oz and 1lb stylus (using unad-
justed and discrete error-adjusted data), pin, and disc transfer tasks. For
each task, the point of minimum least square difference with the mea-
sured data is indicated in red along with contours at every 1% of the
least squares difference obtained for the linear regression to a maximum

of 20%. For comparison, the measured data, linear regression (broken
line), and the delayed-feedback performance curve that best matches
the data are given (solid line). The X-axis contains the task ID in bits,
and the Y-axis contains the measured movement time in milliseconds
(color figure online)

area has shown that the presence of noise can statistically
stabilize circuits that are tuned near the edge of instability
and may, therefore, be an important aspect of human motor
control (Venkadesan et al. 2007; Moreau and Sontag 2003;
Cabrera et al. 2004; Cabrera and Milton 2004). Although the
deterministic circuit has the advantage of a tractable math-
ematical analysis, perhaps the proper framework for under-
standing the neurodynamics of human motor control would
be a system of stochastic delay differential equations that
includes signal-dependent or other noise terms. The results
presented here may hopefully serve as a starting point for
such studies.

However, even if our model was completely realistic, the
motor circuit parameters we estimate are also sensitive with
regard to how we choose to define the movement time of a
VITE circuit trajectory. In order to further complicate things,
the movement times for a task measured during an experi-
ment may not be entirely attributable to the operation of the
VITE circuit. Dwell time and terminal phase submovements
generated by auxiliary circuits not described by the model
may obfuscate the true values of MT required to make a reli-
able estimate. The estimate is also highly sensitive to whether

adjustment for accuracy is used to account for subjects not
taking advantage of the entire target area during a task.

Delay within the motor circuit potentially arises from
many sources such as sensory transduction, latencies in cen-
tral processing, and in motor output. Many studies have quan-
tified the synaptic delay between two single neurons and
an approximate value is 1–2 ms (Carr and Konishi 1988;
Sabatini and Reghr 1996; Stratford et al. 1996). The delay
associated with conduction along the axon depends on the
length of the axon and whether the axon is myelinated or
nonmyelinated, with values determined to be between 1 and
20 ms (Macefield and Gandevia 1992; Burke et al. 1994).
Actual motor circuit delays are difficult to measure, and val-
ues have been reported from about 30 ms for a spinal reflex
up to 300 ms for a visually guided response, and have addi-
tionally been found to be dependent on task demands (Keele
and Posner 1968; Zelaznik et al. 1983; Barrett and Glencross
1989; Miall 1996). For a discussion, see Wu (2001).

The delay estimates given here are frequently smaller
than the minimum delay that would be required for motor
control to be based on afferent proprioceptive feedback or
visual guidance unless an internal forward model operates to
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Fig. 11 A plot of the estimated
delays and time constants for the
data sets from MacKenzie
(1991). Omitted are the data sets
from Annett et al. (1958) (data
sets A,B,C,T), Glencross and
Barrett (1983) (data set B), and
Marteniuk et al. (1987) (data set
B) for which the nonlinear
regression does not reach a
satisfactory minimum. Data sets
from the three studies for which
no delayed feedback parameters
exist corresponding to the
observed speed–accuracy
trade-off have been omitted
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Fig. 12 Graphs of the remaining data sets from MacKenzie (1992)
Appendix A, the linear regression (broken line), and the performance
of the VITE curve with parameters best fitting the data (solid line).

The x-axis represents ID (in bits), and the y-axis represents movement
time (in milliseconds). The parameters of best fit corresponding to each
graph are given in Fig. 11
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Fig. 13 Estimation of parameters for the motor circuit involved in per-
forming computer input tasks (data from MacKenzie 1991 Appendix
B) using standard deviation-adjusted data. For each task, the point of
minimum least square difference with the measured data is indicated
in red along with contours at every 1% of the least squares difference

obtained for the linear regression to a maximum of 10%. For compari-
son, the measured data, linear regression (broken line), and the delayed-
feedback performance curve that best matches the data are given (solid
line). The X-axis contains the task ID in bits, and the Y-axis contains
the measured movement time in milliseconds (color figure online)

compensate for delay by anticipating the response of the body
(and environment) to motor commands. Within the VITE
circuit, present position information is identified as being
derived from an outflow-command integrator located along
the pathway between the pre-central motor cortex and the
spinal motor neurons. It is likely that the forward predictive
model anticipates motor response based on an efference copy
of motor commands, which are then integrated to form pres-
ent position information. The unavoidable delays in neural
processing and conduction time for this mechanism are one
type of central delay which may still occur when a forward
predictive model operates.

We should expect the neural mechanism of the forward
predictor and the degree by which it is able to anticipate
the response of the body to outflow motor commands to
depend on the particular limb, muscle group, and type of
motion involved. This would result in systematic differ-
ences in the effective delay between tasks and may partially
explain some of the variation of the Fitts’ law coefficients
between tasks that the information paradigm attributes to dif-
ferences in motor circuit “throughput”. The effective delay

may also be affected by transient changes in the response of
the muscle plant to outflow motor commands from fatigue,
injury, changes in blood flow, etc.; the health of the central
nervous system; and the perceived context of the movement
(Vetter and Wolpert 2000).

Desmurget et al. (1999) suggest that the posterior parie-
tal cortex can evaluate the current location of the hand by
integrating proprioceptive signals from the somatosensory
area and efferent copy signals from the motor region. Their
conclusion was based on transcranial magnetic stimulation
(TMS) applied over the medial intraparietal sulcus dis-
rupting subjects ability to update control during pointing
movements to a target that jumps unpredictably. When stim-
ulation was applied, instead of reaching toward new target
positions, the subjects reached to the original target position.
In trials with stationary target, stimulation had no effect. This
is consistent with the presence of a forward model, which
then becomes the only source for guiding movements during
TMS disruption (Cisek 2001). Tunik et al. (2005) have also
recently shown that updating to perturbed grasping trials is
blocked with parietal TMS, where DV and PPC information
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Fig. 14 Estimation of parameters for the motor circuit involved in per-
forming computer input tasks (data from MacKenzie 1991 Appendix B)
using discrete error-adjusted data. For each task, the point of minimum
least square difference with the measured data is indicated in red along
with contours at every 1% of the least squares difference obtained for

the linear regression to a maximum of 10%. For comparison, the mea-
sured data, linear regression (broken line), and the delayed-feedback
performance curve that best matches the data are given (solid line). The
X-axis contains the task ID in bits and the Y-axis contains the measured
movement time in milliseconds (color figure online)

is speculated to be calculated, and that this calculation occurs
within 60 ms. This is consistent with the delay estimates pre-
sented here.

Winstein et al. (1997) report PET scan measurements of
changes in regional cerebral blood flow (rCBF) with ID dur-
ing a Fitts’ paradigm reciprocal tapping task with the right
hand. As aiming task difficulty increased, rCBF increased
in areas associated with the planning of more complex
movements requiring greater visuomotor processing. These
included bilateral occipital, left inferior parietal, and left
dorsal cingulate cortices–caudal supplementary motor area
proper and right dorsal premotor area. As task ID decreased,
significant increases in rCBF were evident in the right ante-
rior cerebellum, left middle occipital gyrus, and right ventral
premotor area. These areas are associated with aimining con-
ditions in which the motor execution demands are high and
precise trajectory planing is minimal.

In addition, a functional dissociation was reported between
larger amplitude aiming conditions (limb transport) versus
smaller amplitude type (endpoint targeting) having equal
difficulty. Areas with significantly greater rCBF for target-
ing were the left motor cortex, left dorsal parietal area (left

intraparietal sulcus), and left caudate. The areas associated
with limb transport included the bilateral occipital lingual
gyri and the right anterior cerebellum. This interpretation is
consistent with primary motor cortex cells reflecting direc-
tional load-independent population coding or the effects of
visual signals guiding the movement (Georgopoulos et al.
1986; Georgopoulos 1995) so that when more precise tar-
geting is required motor cortex neurons are recruited to
define the trajectory. This finding, therefore, supports the
VITE model which identifies the precentral motor cortex
as providing the difference vector command and suggests
that where more precise targeting is required the demands
for this particular motor cortex cell computation would be
greater.

Assuming that the estimation method developed here is
not a complete fantasy, it would provide a simple, indi-
rect, and noninvasive way to quantify motor circuit delays.
Possibly, this could be developed into a clinical diagnos-
tic tool to assess central and peripheral motor circuit func-
tion in the context of a variety of diseases known to affect
these circuits (such as, for example, Multiple Sclerosis or
Guillan-Barre syndrome). However, even if the model is a
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Fig. 15 The Fitts’ law
coefficients of slope and
Y-intercepts for the studies
reported in the Appendices of
MacKenzie (1991). For
reference, the corresponding
delayed VITE circuit parameters
are also shown (broken lines).
Points lying outside the region
having corresponding model
parameters are most likely
attributable to outdated
experimental designs that
incorporate “dwell time” into
the measurement of movement
time and thus overestimate the
Y-intercept. Unadjusted data set
are represented by circles while
data adjusted for accuracy are
represented by squares (SD
method) and triangles (DE
method)
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realistic description of the motor circuit, the sensitivity of
the estimated effective delay to experiment design might still
be a barrier to making accurate estimations. Validation of
the delay estimates given here and determining what central
neural pathways they might correspond to remain an open
question.
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